# Comparison of approaches to model sequential multiple mediators

D Zugna, F Fasanelli, M Popovic, L Richiardi Dip. Scienze Mediche, Univ. Torino

#### SISMEC

Rome, 20 September 2019

## Case study: Ninfea cohort, N=4797



Confounders (C): region, maternal age, education and BMI, parity, child sex

## Standard regression analysis

Total effect of A on Y: RR=1.64 (1.31:2.05)



Adjusted for C: A - Y,  $A - M_1$ ,  $A - M_2$ Adjusted for A, C:  $M_1 - Y$ ,  $M_1 - M_2$ Adjusted for A, C,  $M_1$ :  $M_2 - Y$ 

## Assumptions

The identification of direct (unmediated) and indirect (mediated) effects requires:

- 1. No unmeasured A Y confounding
- 2. No unmeasured  $M_1 Y$  and  $M_2 Y$  confounding
- 3. No unmeasured  $A M_1$  and  $A M_2$  confounding
- 4. No measured  $M_1 Y$  and  $M_2 Y$  confounding affected by A (intermediate confounding)

# Multiple mediation: Why?

• Interest in estimating the mediated effect of A on Y through different mediation pathways:  $A \rightarrow M_1 \rightarrow Y$ ,  $A \rightarrow M_1 \rightarrow M_2 \rightarrow Y$  and  $A \rightarrow M_2 \rightarrow Y$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Allows dealing with intermediate confounding

## Case study: Ninfea cohort, N=4797



Confounders (C): region, maternal age, education and BMI, parity, child sex

Sequential mediators:  $M_1 \Rightarrow M_2$ 

- 1. To model  $M_1$  and estimate the portion of the mediated effect through  $M_1$
- 2. To model  $M_1$  and  $M_2$  jointly and estimate the portion of the mediated effect through  $M_1$  and  $M_2$  considered together
- ► This allows to assess the additional contribution of *M*<sub>2</sub> beyond *M*<sub>1</sub> alone
- ► It is not trivial to estimate the effect mediated through M<sub>2</sub> alone because M<sub>1</sub> and M<sub>2</sub> share common pathways

# Some definitions

- ► M<sub>a</sub> is the counterfactual value of M if exposure A were set to the value a
- ► Y<sub>aM<sub>a\*</sub></sub> is the counterfactual value for Y if A were set to a and M were set to M<sub>a\*</sub>, the level it would have been for each individual had exposure been a<sup>\*</sup>
- Marginal natural direct effect: E[Y(a, M<sub>1</sub>(a<sup>\*</sup>), M<sub>2</sub>(a<sup>\*</sup>, M<sub>1</sub>(a<sup>\*</sup>))]/E[Y(a<sup>\*</sup>, M<sub>1</sub>(a<sup>\*</sup>), M<sub>2</sub>(a<sup>\*</sup>, M<sub>1</sub>(a<sup>\*</sup>))]
- Marginal natural indirect effect: E[Y(a, M<sub>1</sub>(a), M<sub>2</sub>(a, M<sub>1</sub>(a))]/E[Y(a, M<sub>1</sub>(a<sup>\*</sup>), M<sub>2</sub>(a<sup>\*</sup>, M<sub>1</sub>(a<sup>\*</sup>))]
- Conditional natural direct and indirect effects can also be defined and estimated

#### Inverse odds ratio weighting approach (IORW)<sup>1</sup>

It applies appropriate weights to render the exposure and the mediators independent, deactivating the indirect pathways. The weights are the inverse of the exposure-mediators odds ratio conditional on the covariates and are used in the weighted regression analysis for the outcome to estimate the direct effect.

#### Weighting approach<sup>2</sup>

To estimate for example  $E[Y(a, M_1(a^*), M_2(a^*, M_1(a^*))]]$ , it generates a pseudo-population for the exposure group  $A = a^*$  using the individuals' own values of mediators and confounders and with the outcome that would have been observed if each subject had been a member of the exposure group A = a. Further it applies appropriate weights to render the exposure and the covariates independent.

<sup>&</sup>lt;sup>1</sup>Tchetgen Tchetgen, *Stat Med*, 2013

²VanderWeele and Vansteelandt, *Epidemiol Method*; 201<u>4</u> + ( ) + ( ) + ( )

#### Imputation-based approach <sup>3</sup>

To estimate, for example,  $E[Y(a, M_1(a^*), M_2(a^*, M_1(a^*))]$  it standardises the mean outcome in each stratum defined by mediators  $M_1$ ,  $M_2$  among individuals exposed at level A = a, to the mediator distribution of individuals exposed at level  $A = a^*$ . This is obtained through an imputation procedure where the observed data are complemented with imputed data in which the same individual is evaluated at different exposure levels, a and  $a^*$ , but corresponding to the observed mediator levels.

| i | $A_i$ | а | <i>a</i> * | $Y_{aM_{a^*}}$ |
|---|-------|---|------------|----------------|
| 1 | 1     | 1 | 1          | $Y_{1M_1}$     |
| 1 | 1     | 0 | 1          | $Y_{0M_1}$     |
| 2 | 0     | 0 | 0          | $Y_{0M_0}$     |
| 2 | 0     | 1 | 0          | $Y_{1M_0}$     |

A regression model is performed on imputed data to estimate direct and indirect effects

<sup>3</sup>Vansteelandt et al, *Epidemiologic Methods*, 2012 => (=> (=> (=> (=> ))

Extension of the imputation-based approach <sup>4</sup>

Natural indirect effect=Natural indirect effect with respect to  $M_1$ + Partial indirect effects with respect to  $M_2$ 



Two further assumptions need to be satisfied, the absence of unmeasured confounding of  $M_1 - M_2$  association and the confounders of this association need not to be affected by the exposure.

<sup>4</sup>Steen et al, *Am J Epi*, 2017

The validity of these methods is subject to the correct specification of the following models:

|                       | Method       |              |            |              |
|-----------------------|--------------|--------------|------------|--------------|
| Models for            | IORW         | Weighting    | Imputation | Extended imp |
| Outcome               | $\sqrt{*}$   | $\checkmark$ |            | $\checkmark$ |
| Mediators             |              |              |            | $\checkmark$ |
| Exposure              | $\checkmark$ | $\checkmark$ |            |              |
| Nested counterfactual |              |              |            | $\checkmark$ |

\*: Unlike the other methods, the mediators are never entered into the regression model for the outcome and is only used to calculate the weight

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Results

|                    | Through $M_1$       |           | Through $M_1$ and $M$ |           |
|--------------------|---------------------|-----------|-----------------------|-----------|
|                    | Estimate            | 95% CI*   | Estimate              | 95% CI*   |
| Marginal effect    | Weighting approach  |           |                       |           |
| NDE                | 1.60                | 1.32-1.94 | 1.57                  | 1.28-1.96 |
| NIE                | 1.01                | 0.99-1.04 | 1.04                  | 0.99-1.09 |
| TE                 | 1.63                | 1.34-2.00 | 1.62                  | 1.32-2.06 |
| Conditional effect | IORW approach       |           |                       |           |
| NDE                | 1.60                | 1.26-1.93 | 1.57                  | 1.23-1.90 |
| NIE                | 1.02                | 0.94-1.12 | 1.04                  | 0.95-1.15 |
| TE                 | 1.64                | 1.35-1.99 | 1.64                  | 1.35-1.99 |
| Conditional effect | Imputation approach |           |                       |           |
| NDE                | 1.60                | 1.32-1.95 | 1.57                  | 1.29-1.90 |
| NIE                | 1.02                | 1.00-1.04 | 1.05                  | 1.01-1.09 |
| TE                 | 1.64                | 1.35-1.99 | 1.64                  | 1.35-1.99 |

\*95% CI: calculated by bootstrap

# Results

|                                  | Extended i | mputation approach |
|----------------------------------|------------|--------------------|
| Conditional effect               | Estimate   | 95% CI*            |
| Joint natural direct effect      | 1.57       | 1.26-1.97          |
| Joint natural indirect effect    | 1.05       | 1.01-1.09          |
| Natural indirect effect by $M_1$ | 1.00       | 0.99-1.00          |
| Partial indirect effect by $M_2$ | 1.05       | 1.01-1.09          |
| *95% CI: calculated by bootstra  | р          |                    |

# Conclusions

- All models are based on counterfactual definitions
- The described approaches give similar results
- Their application requires: (i) glm, (ii) weighting (excluding the imputation-based approach), (iii) estimate of the predicted values, (iv) bootstrap procedures
- R library has been developed for the imputation-based approach (medflex)

## References

- 1. Tchetgen Tchetgen EJ. Inverse odds ratio-weighted estimation for causal mediation analysis. *Stat Med.* 2013 Nov 20;32(26):4567-80.
- 2. VanderWeele TJ, Vansteelandt S. Mediation analysis with multiple mediators. *Epidemiol Methods*. 2014;2(1):95-115.
- Vansteelandt S, Bekaert M, Lange T.Imputation strategies for the estimation of natural direct and indirect effects. *Epidemiol Methods*. 2012;1(1):131-158.
- Steen J, Loeys T, Moerkerke B, and Vansteelandt S. Flexible Mediation Analysis With Multiple Mediators. *Am J Epidemiol.* 2017;186(2):184-193.

# Aknowledgements

This work was supported by the European Union's Horizon 2020 research and innovation programme (LifeCycle Project) and by the programme "Dipartimenti di Eccellenza 2018–2022" (Teseo Project).